Announcement

Collapse
No announcement yet.

โมให้ดีกันเยอะแล้ว มาม๊ะ....มาโมให้"เจ๊ง"กันดีกว่า

Collapse
X
 
  • Filter
  • Time
  • Show
Clear All
new posts

  • เข้าใจในสิ่งที่คุณmilestoneพูดถึงน่ะ
    แต่ในความเป็นจริง ในเครื่องเล่นต่างๆ ไม่มีการคาริเบทในส่วนนี้
    เค้าใช้"วงจรผลิตความถี่ (Oscilator)" แบบใช้ผลึกคริสตัลเพื่อต้นทุนการผลิตที่ไม่สูงมากแต่ใช้งานได้ดีคุ้มราคา
    วงจรทั้งหมดก็ใช้อะหลั่ยร่วมไม่กี่ตัว ผลึกคริสตัล1ตัว R,Cอีก2-3ตัว แล้วเอาความถี่ที่ได้ไปใช้งานเลย

    ลองดูรูปวงจรที่ผมโพสไว้ที่โพสด้านบน ลองดูวงจรจากไฟล์ดาต้าชีทของผู้ผลิตชิบหลายๆยี่ห้อ หรือ ลองดูจากเครื่องจริง ซาวน์การ์ดจริงก็ได้ เค้าทำมาแบบนี้จริงๆ


    - Crystal คือวัสดุเพื่อเป็นตัวสร้างความถี่ที่ดีคุ้มราคา แต่มันที่สุดหรือเปล่า ใช้วัสดุอื่นทำให้ดีกว่าได้หรือเปล่า
    - ลองดูสเปคของตัวCrystal มีค่าความผิดพลาดหรือเปล่า ความผิดพลาดที่เกิดขึ้นเกิดจากตัวแปรไรได้บ้าง
    - อะหลั่ยร่วมกับCrystal ในวงจรOscilator มีความผิดพลาดหรือเปล่า
    - ลองดูของจริงว่า วงจรเป็นยังงัย ใช้อะไรร่วมในวงจรบ้าง
    - ทำไมผู้ผลิตรายเดียวกัน บางรุ่นใส่แบบพิเศษ บางรุ่นใส่แบบธรรมดา บางรุ่นทำPCBให้ใส่ได้ทั้ง2แบบ(แต่ใส่แบบธรรมดามาในการ์ด)


    ทั้งหมด คือ คำตอบว่า เที่ยงตรงจริงหรือเปล่า ไม่มีโอกาสผิดพลาดจริงหรือเปล่า
    ไม่เปลี่ยนได้อะไร เปลี่ยนแล้วได้อะไร หลังจากเปลี่ยนแล้วมีผลกระทบอะไรบ้าง
    ลองดูข้อมูลข้างล่างเพิ่มเติม จะได้รู้ว่าวัสดุแต่ละชนิดที่นำมาใช้เป็นตัวสร้างความถี่ มีประสิทธิภาพเช่นไร


    Introduction to Quartz Frequency Standards - Oscillator Comparison and Selection
    คลิก

    The discussion that follows applies to wide-temperature-range frequency standards (i.e., to those which are designed to operate over a temperature range that spans at least 90°C). Laboratory devices that operate over a much narrower temperature range can have better stabilities than those in the comparison below.

    Commercially available frequency sources cover an accuracy range of several orders of magnitude--from the simple XO to the cesium-beam frequency standard. As the accuracy increases, so does the power requirement, size, and cost. Figure 34, for example, shows the relationship between accuracy and power requirement. Accuracy versus cost would be a similar relationship, ranging from about $1 for a simple XO to about $40,000 for a cesium standard (1991 prices). Table 1 shows a comparison of salient characteristics of frequency standards. Figure 35 shows the comparison of short term frequency stability ranges as a function of averaging time [43]. Figure 36 shows a comparison of phase-noise characteristics, and Table 2 shows a comparison of weaknesses and wear-out mechanisms.


    Figure 34. Relationship between accuracy and power requirements (XO=simple crystal oscillator; TCXO=temperature-compensated crystal oscillator; OCXO=oven-controlled crystal oscillator; Rb=rubidium frequency standard; Cs=cesium beam frequency standard).


    Figure 35. Stability as a function of averaging time comparison of frequency standards.


    Figure 36. Phase instability comparison of frequency standards.





    Characteristics are provided in Table 1 for atomic oscillators: rubidium and cesium frequency standards and the rubidium-crystal oscillator (RbXO). n atomic frequency standards, the output signal frequency is determined by the energy difference between two atomic states, rather than by some property of a bulk material (as it is in quartz oscillators). An introductory review of atomic frequency standards can be found in reference 44, and reference 45 is a review of the literature up to 1983. (Reference 44 reviews both atomic and quartz frequency standards; the report you are reading is based on the quartz portion of that document.) The RbXO is a device intended for applications where power availability is limited, but where atomic frequency standard accuracy is needed [46,47]. It consists of a rubidium frequency standard, a low-power and high-stability crystal oscillator, and control circuitry that adjusts the crystal oscillator's frequency to that of the rubidium standard. The rubidium standard is turned on periodically (e.g., once a week) for the few minutes it takes for it to warm up and correct the frequency of the crystal oscillator. With the RbXO, one can approach the long-term stability of the rubidium standard with the low (average) power requirement of the crystal oscillator.

    The major questions to be answered in choosing an oscillator include:
    1. What frequency accuracy or reproducibility is needed for the system to operate properly?
    2. How long must this accuracy be maintained, i.e., will the oscillator be calibrated or replaced periodically, or must the oscillator maintain the required accuracy for the life of the system?
    3. Is ample power available, or must the oscillator operate from batteries?
    4. What warmup time if any, is permissible?
    5. What are the environmental extremes in which the oscillator must operate?
    6. What is the short-term stability (phase-noise) requirement?
    7. What is the size constraint?

    In relation to the second question, what cost is to be minimized: the initial acquisition cost or the life-cycle cost? Often, the cost of recalibration is far higher than the added cost of an oscillator that can provide calibration-free life. A better oscillator may also allow simplification of the system's design.

    The frequency of the oscillator is another important consideration, because the choice can have a significant impact on both the cost and the performance. Everything else being equal, an oscillator of standard frequency, such as 5 MHz or 10 MHz, for which manufacturers have well established designs, will cost less than one of an unusual frequency, such as 8.34289 MHz. Moreover, for thickness-shear crystals, such as the AT-cut and SC-cut, the lower the frequency, the lower the aging [17]. Since at frequencies much below 5 MHz, thickness-shear crystals- become too large for economical manufacturing, and since all the highest stability oscillators use thickness shear crystals, the highest stability commercially available oscillator's frequency is 5 MHz. Such oscillators will also have the lowest phase-noise capability close to the carrier. There are also some excellent 10 MHz oscillators on the market; however, oscillators of much higher frequency than 10 MHz have significantly higher aging rates and phase noise levels close to the carrier than do 5 MHz oscillators. For lowest phase-noise far from the carrier, where the signal-to-noise ratio determines the noise level, higher frequency crystals (e.g., 100 MHz) can provide lower noise because such crystals can tolerate higher drive levels, thereby allowing higher signal levels.


    --------------------------------------------------------------


    The Design and Performance of Precision Miniature TCXOs
    คลิก

    Ever since the advent of the use of quartz crystals as frequency control devices, there has been an ongoing quest to improve their temperature stability. After a brief review of the history of crystal oscillator temperature compensation, this article will describe the current state-of-the-art in TCXO temperature compensation technology and the associated crystal resonators.

    When the first crystal oscillators were built in the 1920s, the only crystals available, such as the X-cut, exhibited poor temperature performance. The development of the AT-cut crystal was a major step toward making temperature compensation feasible[1]. The AT-cut provided for a relatively flat frequency vs. temperature curve centered on +25 °C. Until about the mid-1940s, the aging and temperature characteristics of crystals were not good enough to make precision corrections practical[2]. Leaky packages led to poor aging drift and deficiencies in crystal plate and wafer design produced crystals with severe activity dips and coupled modes[3]. This produced significant frequency perturbations that limited the effectiveness of any attempt at compensation. But advances in quartz plate design and crystal packages such as the cold weld holders made it possible to produce crystals with relatively smooth frequency vs. temperature curves and aging rates as low as 1 x 10-9 (or 1 x 10-3 ppm) per day.


    Figure 1. Family of characteristic temperature curves for fundamental frequency of AT-cut crystal.

    Thermistor/resistor Network Compensation
    Thermistor/resistor TCXOs have been the mainstay of crystal oscillator temperature compensation for 50 years. A correction voltage generated by a network of one or more thermistors cancels the frequency vs. temperature variation of a voltage- controlled crystal oscillator. The introduction of voltage-variable capacitance varactor diodes along with improvements in negative-temperature coefficient thermistors made it possible to compensate crystals to a greater precision[4]. As early as 1961, compensation ratios of greater than 100-to-1 were being achieved. This would indicate that a crystal with a peak-to-peak deviation of 40 ppm over temperature could be compensated to a level of 0.4 ppm. Today, ratios of two orders of magnitude are about the limit for thermistor/resistor compensation, although achieving that level is facilitated by improved, automated systems and computer analysis power. But even today, achieving stabilities of better than 0.5 ppm requires multiple temperature runs and repeated network adjustments with at least three thermistors. Some attempts at automation of the compensation process using resistor trimming or digital adjustment of thermistor sensitivities have been moderately successful[5], but these configurations could not be easily integrated for small package size requirements.

    Digital Temperature Compensation
    By the late 1970s, advances in integrated circuit technology made it practical to realize compensation systems employing analog-to-digital conversions and solid-state memory[6]. Although the implementations were crude by today's standards, digital TCXO's achieving better than 0.1 ppm performance were produced by several companies, including Rockwell Collins and Greenray Industries. Other digital implementations have been developed over the years, many with embedded computing power to facilitate calibration and system operation. Some employed elaborate temperature measurement schemes such as dual-mode crystal selftemp sensing. Although some of these designs achieved temperature stabilities of 0.05 ppm or better, they were larger and relatively complex assemblies, often with spurious noise generation problems.

    Analog Integration
    As the capabilities of large-scale integration continued to expand, it became possible to include more of the functions required for temperature compensation into a single IC. This has led to the current generation of ASICs that allows the construction of a precision analog TCXO with only two components: the ASIC plus the quartz crystal.

    The latest devices that have emerged for TCXO applications are complex, large-scale ICs combining precision analog functions, non-volatile digital storage, varactor diodes and RF oscillator circuitry[7]. Figure 2 illustrates a block diagram of a generic device. Although the first-generation fabrications resulted in relatively large die, reductions in geometries have produced smaller ICs that enable a complete precision TCXO to be housed in a package as small as 3.2 mm x 5 mm.


    Figure 2. Integrated TCXO ASIC

    Polynomial Function Generator
    The heart of the ASIC is the polynomial function generator engine. The goal is to produce a temperature-varying voltage that will match the VCXO voltage required to keep the oscillator frequency exactly on nominal over the full temperature range. Starting with a linear temperature sensor and then using a series of analog multiplications, the coefficients of a high-order polynomial are simulated. This function is described as:

    Δf/f(T)= a0+a1(T-Ti)+a2(T-Ti)2+a3(T-Ti)3+a4(T-Ti)4+a5(T-Ti)5

    Where a0 to a5 are the coefficients of the polynomial to be generated, T is the current temperature and Ti is the inflection temperature of the crystal (the temperature where the crystal curve is centered with respect to the lower and upper turning points, usually around +26 °C).

    The range of adjustment of the variables is calibrated to cover the AT-cut crystal angles over temperature. All temperatures are referenced to the crystal inflection temperature. The coefficient values are stored as digital numbers in non-volatile registers on the chip. Although the ideal AT crystal should follow a third-order curve, non-linearities in the circuitry and the crystal require that higher-order terms be included in order to obtain a match to the required compensation voltage curve. The crystal inflection temperature is important in matching the curve and is one of the variables that must be programmable in order to use a wider range of crystals. Some miniature strip crystals may have inflections as high as 40 °C, which can make accurate curve fitting difficult.

    Integrated Oscillator Functions
    In addition to the function generator, all other oscillator functions are included on the latest chips. A precision low dropout (LDO) voltage regulator supplies power to all of the on-chip circuitry. Because of the stable voltages that must be maintained to achieve the frequency stability required, a precise reference voltage source is essential. Operation as low as +2.7 Vdc is possible.

    The crystal oscillator drive circuitry is on-chip with programmable crystal drive current to accommodate a range of crystal impedances and frequencies. The voltage variable capacitors that adjust the oscillator frequency are usually implemented as a MOS structure instead of a conventional doped junction diode. A relatively high tuning sensitivity is required due to the low-voltage operation of the devices and may exceed 50 ppm/V.

    Output conditioning circuitry buffers the crystal and oscillator from the load and provides the proper output voltage levels. Most ASICs can supply either a CMOS squarewave or a lower-power 1 Vpk-pk clipped sinewave. Electronic frequency control for implementing a VCXO function is available. A few bytes of undedicated user memory are useful for storing serial numbers and other characterization data for improved automation.

    Precision AT Crystals
    As has been the case, it is impossible to produce a precision TCXO without a high-quality crystal. While good crystals are still produced as round blanks in conventional two-leaded welded packages, their size precludes their use in many miniature oscillator designs. This has led to the development of AT strip crystal designs with excellent performance in small form factors. Although the motional capacitance is lower, it is possible to achieve sufficient tuning sensitivity for compensation. With proper blank design, packaging and careful processing, performance equivalent to or, in some cases, even better than conventional round crystals is achieved. Aging rates can be low, achieving a fraction of a ppm per year.

    Calibration and Compensation Procedures
    Due to the nature of the crystal/oscillator combination, it is necessary to measure and calibrate each oscillator individually when considering sub-ppm levels. Although most TCXOs in a given batch are similar, no two are the same when attempting to match curves to less than a part per million. It is important to actively characterize each unit over the temperature range of interest in order to calculate the initial coefficient parameters that will be loaded into the unit.

    A requirement run is performed where each oscillator is operated over the temperature range of interest while determining the VCXO control voltage that is necessary to keep the output on nominal frequency. This data is then input to a curve-fitting algorithm that calculates the polynomial coefficients that give the best match. These coefficient values are loaded into the ASIC and another temperature test is performed to determine if the frequency drift is within the specification allowance. While some yield may be obtained on the first run depending on the specification, most units will require a correction to be made and then re-verified. This is due to the accuracy and repeatability of the initial measurements. With programmable ASICs, automated test systems are set up to perform all of these functions without operator interaction.

    Static Frequency vs. Temperature Characterization
    The achievable frequency vs. temperature performance is a function of how closely the compensating voltage curve generated by the polynomial generator matches the required voltage of the VCXO. Many variables affect this capability, including the tuning linearity of the VCXO; the quality of the crystal, i.e,. how closely it follow the ideal AT curve; the temperature coefficient of other oscillator components; the inflection temperature of the crystal; and the stability of the voltage reference. Figure 3 shows the frequency vs. temperature performance that can be achieved.


    Figure 3. Frequency vs. Temperature of 20MHz TCXO at 2°C intervals.

    Temperature Ramp Testing
    The frequency excursions that occur during changing temperature conditions will vary depending on the direction and rate of the temperature change. An important feature is close thermal coupling between the crystal and the temperature sensor of the ASIC. This thermal path is inherently short with a miniature package since the crystal and ASIC are physically close. Because of this, most small TCXOs will perform well. Figure 4 shows a 20 MHz oscillator during a slewing temperature run. The red curve shows the chamber temperature on the right y-axis, and the blue curve is the oscillator frequency on the left y-axis. The x-axis plots time as normalized to the reading number (each reading takes 20 ms). Starting at +25 °C, the chamber is ramped up to +90 °C at a rate of 8 °C/minute. After stabilizing, it is ramped down to ­60 °C at the same rate. Except for the peak at the hot end where the temperature exceeded the compensated range, it can be seen that the effect of the ramp is minimal, with little hysteresis evident from ramping in opposite directions.


    Figure 4. 20MHz TCXO Frequency During a °C/minute Temperature Ramp.

    Perturbations and Micro-jumps
    TCXO crystals have historically been plagued with anomalies in their temperature performance caused by blank design or imperfections in the processing and manufacture of the crystal. Marginal blank geometry can lead to coupling of other modes of oscillation that may be close to the frequency of the desired mode. These modes can interfere with the oscillator frequency at various temperatures causing increases in the crystal resistance or "activity dips" and resulting frequency excursions. These perturbations typically occur over a narrow temperature band. It is possible that the circuit may cease to oscillate at these points, or may not start when power is applied.

    Another inconsistency that may occur over temperature is a jump or step offset in frequency. These offsets are small and often are not observed under normal TCXO testing. Many times, TCXOs are only tested at six or eight points over the temperature range. Under these conditions, many perturbations and jumps will go undetected. In applications where this type of irregularity is critical to system performance, the oscillators should be tested over many more points. Testing at 28 intervals is a good compromise that will catch most perturbations without a great increase in test time.

    For the greatest confidence, the frequency of each oscillator should be continuously monitored as the temperature is ramped from one extreme to the other and back. This type of test guarantees that any perturbation or micro-jump that is present will be captured. Figure 5 shows the screening results of a 20 MHz TCXO that was monitored during the 8 °C/minute ramp profile. For this entire time, the output frequency is continuously recorded 50 times per second with no dead time between the readings. The blue line is a plot of the difference between successive readings, which highlights any instantaneous jumps. This AT-strip crystal shows no perturbations and just a few small micro-jumps throughout the test, which indicates a TCXO with exceptional performance.


    Figure 5. First difference between successive continuous frequency samples.

    Figure 6 has zoomed in on the area around reading No. 3059. The y-axis is the frequency in Hertz indicating a step of around 10 ppb. These small steps are fairly repeatable, although they may not appear when the temperature is slewed in the opposite direction.


    Figure 6. Expanded view of 10 ppb micro-jump.

    Aging
    One other parameter of concern to most TCXO users is the long-term drift of the frequency caused by aging. Although other oscillator components can contribute to aging, in a well-designed oscillator the aging is primarily due to the crystal. Changes in the crystal's resonant frequency arise because of mass transfer to or from the quartz blank. Relaxation of mounting stresses can also play a role. Advances in crystal design and processing have reduced the aging capability to under 1 ppm per year, even for miniature packages. Long-term projections for the 10- or 20-year expected life of an oscillator can be less than 5 ppm, as the aging rate decays with time. Aging effects can be projected with curve-fit extrapolation using the MIL-SPEC logarithmic model:

    Δf/f(T)= a0+a1In(1+a2t)

    Where t is the time in days and a0, a1 and a2 are numerical coefficients adjusted for curve fitting to the sample data.

    Acceleration Sensitivity
    If the oscillator's operating environment includes vibration and shock levels, the acceleration or "g" sensitivity (where g = 9.8 m/s2) of the crystal can be an important parameter. Vibration levels will modulate the output causing noise sidebands on the signal. Shock pulses will produce short perturbations in the frequency, which may be problematic for phase locked loops or similar circuitry. The miniature AT strip crystals may be designed to provide low sensitivity to these forces. Levels below 5 x 10-10 (or 5x10-4 ppm) per g in the worst axis are routinely produced for critical applications. Because of the design of the strip resonator and its mount, the worst axis for acceleration is predictable. The vector always points in the vertical or z-axis, almost directly perpendicular to the crystal plate. The sensitivity in the x and y axes is extremely low. These crystals can also withstand high levels of pyrotechnic shock. Some have been tested to 100,000 g.8

    Future Trends
    Since the basic TCXO architecture has been integrated into a single IC, which is suitable for many applications, further reductions in the size of precision oscillators will require smaller resonators. Although bulkmode quartz resonators can be made small, physical limitations preclude making usable devices below a certain size. Surface-mount packages with 3.2 mm x 5 mm or smaller footprints (Figure 7) are available with reasonable motional parameters and stabilities. But reductions much beyond this level may require advancement of resonator technologies. Silicon micro-machined resonators can be fabricated on the same die as the oscillator circuitry[9]. Although these oscillators have not achieved the stability of a precision TCXO, further improvements are directed toward this goal. These devices may soon begin to displace quartz oscillators in lower-end, high-volume applications, but quartz crystals will still be required for precision frequency control for the foreseeable future.
    Last edited by keang; 15 Oct 2010, 13:38:40.

    Comment


    • อ้อ มีครับ ค่าที่เค้าวัดมาจะอยู่บนอะไหล่ที่คุณ keang โชว์รูปด้านบนนั่นละครับ
      จะมีค่า + หรือ - เป็น Mz เท่าใด จริงๆแล้วถ้าเฉพาะคริสตัลมันตัวจิ๊ดเดียวเอง
      ด้านในอะไหล่ผมคิดว่าจะมีวงจรซ้อนอยู่อีก แต่ก็ไม่เคยแกะนะครับ
      ถ้าสังเกตุเพิ่มเติม อะไหล่ตามรูปบางตัวจะมีคำว่า Set at 25C
      ซึ่งอุณหภูมิมีผลต่อการหดและขยายตัวของสสาร ทำให้ค่าของคริสตัลเปลี่ยนไปถ้าอุณหภูมิเปลี่ยน
      ซึ่งถ้าเราจ่ายกระแสเพิ่มขึ้นค่าทอรอเลนซ์ที่เค้ากำหนดก็จะเปลี่ยนไปด้วยตามที่ได้กล่าวมา

      ซึ่งตามความเข้าใจผม สามารถนำไปต่อยอดได้ 2 แบบ
      1ถ้าต้องการให้เที่ยงตรงที่สุด คือการคุมอุณหภูมิให้ได้ จะเอาอะไรมากั้นก็ตามแต่ ซึ่งตรงนี้มีผลตรงกับที่คุณเก่งหามาข้อความนี้ครับ

      Polynomial Function Generator
      The heart of the ASIC is the polynomial function generator engine. The goal is to produce a temperature-varying voltage that will match the VCXO voltage required to keep the oscillator frequency exactly on nominal over the full temperature range. Starting with a linear temperature sensor and then using a series of analog multiplications, the coefficients of a high-order polynomial are simulated. This function is described as:

      Δf/f(T)= a0+a1(T-Ti)+a2(T-Ti)2+a3(T-Ti)3+a4(T-Ti)4+a5(T-Ti)5

      2.ทำเสียงให้ถูกใจโดยการเล่นที่ภาคจ่ายไฟของคริสตัลทำให้ค่าของตัวมันเองเปลี่ยนไป แค่ระวังอย่าให้กระแสเกินจนเสียหายก็พอ

      ปล ไม่มีสิ่งใดในโลกที่ไม่มีข้อผิดพลาดหรอกครับ แต่ของทุกสิ่งจะมีค่าที่เปลี่ยนไปและเกณฑ์การยอมรับได้ที่จุดหนึ่ง
      ที่คุณเก่งเข้าใจนั่นไม่ใช่ทฤษฎีแต่เป็นข้อเท็จจริงเลยละครับ สมัยรบกันเรื่อง HDMI ผมก็เคยพูดถึงจุดนี้มาแล้ว ^^
      Last edited by milestone; 15 Oct 2010, 17:23:27.

      Comment


      • ถ้าเป็นตัวXO ข้างในจะไม่มีไรเลย ขา2ขาเชื่อมต่อเข้ากับผลึก


        ถ้าเป็นตัวTCXO ข้างในจะมีผลึก มีวงจรออสซอเลเตอร์ มีวงจรพาวเวอร์ซัพพลายอยู่ข้างในด้วย
        สังเกตุง่ายๆ ที่ตัวจะมีมากกว่า2ขา เริ่มต้นที่4ขา 2ขาที่เพิ่มขึ้นมาคือขาไฟเลี้ยง และมีเขียนกำกับไว้ที่ตัวมันด้วย


        ตัวแบบนี้ เคยเจอแบบ2ขาและ4ขา เลยไม่รู้ว่า สรุปแล้วมันเป็นแบบไหนแน่



        แต่ถ้าให้ผมเปลี่ยนจากXOเป็นTCXOหรือแบบอื่นที่ดีกว่า ผมคงไม่เอาตามความถี่ที่เค้าใส่มา
        ผมจะเลือกความถี่แบบนี้ 22.05 / 24.0 / 44.1 / 48 (คงไม่ต้องอธิบายว่าทำไมต้องเป็นความถี่ตามนี้น่ะ)
        แต่ต้องเลือกให้ตรงกับตัวชิบตัววงจรที่จะเอาไปใช้ด้วยว่า เป็นความถี่แบบ x1 หรือ x2


        ---------------------------------------------


        ลองดูผู้ผลิตซาวน์การ์ดCreative มีการเลือกใช้แบบไหนบ้าง

        Live - CT1140 การ์ดสำหรับกลุ่มผู้ใช้ระดับสูง ใส่แบบTCXO
        ( แอบเอารูปที่ติดชื่อใครบางคน เผื่อเค้าจะรู้ตัวว่ามีของดีอยู่ในมือ )


        Live - CT4830 การ์ดสำหรับกลุ่มผู้ใช้ระดับสูง ใส่แบบTCXO


        Live - SB0100 การ์ดสำหรับกลุ่มผู้ใช้ทั่วไป ใส่แบบXO (PCBทำเผื่อใส่แบบTCXOได้)


        Live - SB0060 การ์ดสำหรับกลุ่มผู้ใช้ระดับสูง ใส่แบบTCXO


        Audigy2 ZS - SB0350 การ์ดสำหรับกลุ่มผู้ใช้ทั่วไป ใส่แบบXO


        Audigy2 ZS Platinum- SB0360 การ์ดสำหรับกลุ่มผู้ใช้ระดับสูง ใส่แบบTCXO


        Audigy4 - SB0610 การ์ดสำหรับกลุ่มผู้ใช้ทั่วไป ใส่แบบXO


        Audigy4 Pro - SB0380 การ์ดสำหรับกลุ่มผู้ใช้ระดับสูง ใส่ 2ความถี่ 2แบบ แบบXO แบบTCXO
        Last edited by keang; 15 Oct 2010, 18:39:11.

        Comment


        • Originally posted by tavichai View Post
          คนทำท่าจะเหนื่อยเอาการแฮะ อิอิ แอบอ่านอยู่นานละ
          ไม่เหนื่อยหรอกครับกินเอ็ม 150 วันละ 18 ขวด ฮ่า ๆๆๆ

          Comment


          • Originally posted by E6420 View Post
            ไม่เหนื่อยหรอกครับกินเอ็ม 150 วันละ 18 ขวด ฮ่า ๆๆๆ
            - . - เยอะไปไหมครับนั้น โต้รุ้งได้สามวันเลย -*-

            พี่ๆครับ ไอตะกั่ว มัน อันตรายอย่างไรเหรอครับ

            Comment


            • วันนี้ยังไม่มีรมณ์ใส่อะหลั่ยเข้าการ์ด แต่มีรมณ์ถอดอะหลั่ยต่อเนื่อง

              เพิ่งนึกได้ว่า เจ้าของการ์ดใช้หูฟังด้วย ถ้าจำไม่ผิดกราโด้SR-60มั้ง
              เลยจัดการถอดอะหลั่ยในส่วนของ แอมป์หูฟัง, Molex 4 pin


              หลักๆเท่าที่นึกออกตอนนี้
              - ปรับปรุงไฟเลี้ยงการ์ดผ่านทางขั้วMolex 4 pin
              - ปรับปรุงไฟเลี้ยง OP-Amp, Headphone Amp
              - ปรับปรุงวงจร I/V converter, OP-Amp output
              - ปรับปรุงวงจร Headphone Amp

              อะหลั่ยที่ใช้ น่าจะเป็น
              - Sprague hongkong สีทอง
              - ROE สีทอง
              - Marcon Organic หรือ Nippon Chemi-Con Organic
              - Cฟิลม์ ถ้าไม่ใช่เหลืองข้างเขียวก็เหลืองข้างดำ หรือ 2อย่างผสมกัน
              - Dale รุ่นRLR07, รุ่นRLR05, รุ่นRN55, รุ่นCMF

              ลืมถามเจ้าของการ์ดว่า พื้นที่ว่างรอบๆตัวการ์ด มีพื้นที่แค่ไหน
              ข้างบนกี่เซน ข้างล่างกี่เซน เพราะ จะได้รู้ว่าใส่อะหลั่ยตัวสูงได้ไม่เกินเท่าไหร่
              โพสบอกไว้ในกระทู้น่ะ จะได้ดูตอนหลังได้

              ซิ้งค์ที่แปะติดชิบ PCI-Bridge หลุดแล้วน่ะ ไว้เอากลับไปติดเองอีกครั้ง
              จริงๆอยากถอดซิ้งค์ที่แปะชิบDSPออกด้วย เพราะทำงานไม่สะดวก แต่กลัวแกะแล้วตัวชิบจะเป็นรอย (กาวยังแน่นอยู่พอสมควร)
              Last edited by keang; 15 Oct 2010, 20:31:13.

              Comment


              • เกิดไม่ทันยุคน้ำมัน มีสารตะกั่วสิน่ะ
                ผมก็แค่รู้ว่าอันตราย แต่ยังไง ลืมหมดแล้ว
                ไปอ่านที้นี้แล้วกัน
                http://dpc5.ddc.moph.go.th/Knowledge/enocc2.html
                ------------------

                โพสต์ภาษาอังกฤษของคุณkeangผมยังอ่านไม่จบเลย ยาว = ="

                ----------------
                กำลังงงๆ เรื่องความถี่ ของ crystal resonator อยู่เลย

                ถ้าพูดให้ถูก คือกำลังงง กับมันทั้งหมดเลย

                หาอ่านได้นิดหน่อยในวิกิก็ยังไม่ค่อยเข้าใจ

                หน้าตาแบบนี้คือมี cystal2ตัวรึเปล่า

                --------------

                เพิ่งสังเกต stx นี้ต่อไฟเพิ่มด้วยเรอะ
                อันนี้คิดเล่น เพื่อ ซื้อมาลองเอง(ฝันกลางวัน)
                ทำ PSU เองแยกต่างหากให้มันจะดีมั้ย??
                เอาหม้อแปลง+ ทำวงจรเรียงกระแส+ทำวงจรpWM ง่ายๆ น้อยก็พวก78xxมาทำ (ขี้เกียจศึกษาแบบอื่นอยู่ แบบshunt กับแบบ LDO งงมาก
                ต่างกับแบบอื่นยังไง - -.)

                ถ้าต่อจาก PSU ทั่วไปนี้คงnoiseกระจายเหมือนเดิม
                เห็นมีคนทำ cmoy headamp แบบ hardwire bayใสช่องcdrom (คนในนี้แหล่ะ กระทู้เก่าๆ เลย)
                ก็บ่นเรื่องว่าต่อไฟจากPSU แล้วเสียงแย่มาก ต้องใช้แบตแทน
                Last edited by ManiacMaew; 15 Oct 2010, 20:47:38.

                Comment


                • พิ้นที่ด้านหลังการ์ดเหลือ1สล็อทครับ ด้านหน้าเหลือเยอะครับใส่EARTHแบบต่อตรงยังเหลืออีกประมาน1สล็อทครับ
                  ซิ้งค์ถ้าถอดได้ถอดไปเลยครับ เอาตามความสะดวกท่านครับ
                  เรื่องเวลาทำผมขอไม่เกินสิ้นเดือนนี้แล้วกันครับ ไม่สะดวกยังไงบอกได้นะครับ

                  Comment


                  • Originally posted by keang View Post
                    วันนี้ยังไม่มีรมณ์ใส่อะหลั่ยเข้าการ์ด แต่มีรมณ์ถอดอะหลั่ยต่อเนื่อง
                    เวนกำล่ะ การ์ด Sound ที่โป๊เปลือย โดนถอดแล้วถ่ายนู๊ด - -'

                    Comment


                    • Originally posted by ManiacMaew
                      เกิดไม่ทันยุคน้ำมัน มีสารตะกั่วสิน่ะ
                      ผมก็เกิดไม่ทันเหมือนกัน

                      Originally posted by ManiacMaew
                      โพสต์ภาษาอังกฤษของคุณkeangผมยังอ่านไม่จบเลย ยาว = ="
                      ค่อยๆอ่าน ค่อยๆทำความเข้าใจครับ เพราะอันนั้นคือเนื้อหาสำคัญล้วนๆ
                      เรื่องราวจะประมาณว่า เหมือนเราดูสเปคอะหลั่ยเกรดพิเศษว่ามันดีกว่าอะหลั่ยเกรดธรรมดายังงัย

                      Originally posted by ManiacMaew
                      กำลังงงๆ เรื่องความถี่ ของ crystal resonator อยู่เลย
                      ถ้าพูดให้ถูก คือกำลังงง กับมันทั้งหมดเลย

                      หน้าตาแบบนี้คือมี cystal2ตัวรึเปล่า
                      ใช้ครับ แบบXO1ตัว แบบTCXO1ตัว

                      Originally posted by ManiacMaew
                      เพิ่งสังเกต stx นี้ต่อไฟเพิ่มด้วยเรอะ
                      อันนี้คิดเล่น เพื่อ ซื้อมาลองเอง(ฝันกลางวัน)
                      ทำ PSU เองแยกต่างหากให้มันจะดีมั้ย??
                      PCI-e Slot จะไม่มีชุดไฟเลี้ยง -12vครับ เค้าเลยต้องเอาไฟ+12vมาแปลงให้เป็น-12vด้วยวงจรจ่ายไฟแบบpwm
                      ถ้าทำซัพพลายแยกให้ต่างหาก มันก็ดีกว่าอยู่แล้วละ แต่ซัพพลายดีๆก็กำเงินไว้อีก1,000+ แต่คุ้มสำหรับคนที่ต้องการคุณภาพ

                      Originally posted by ManiacMaew
                      เอาหม้อแปลง+ ทำวงจรเรียงกระแส+ทำวงจรpWM ง่ายๆ น้อยก็พวก78xxมาทำ (ขี้เกียจศึกษาแบบอื่นอยู่ แบบshunt กับแบบ LDO งงมาก
                      ต่างกับแบบอื่นยังไง - -.)
                      LDO เป็นพวก Low Drop คือ ไฟเข้าสูงกว่าไฟออกเพียงเล็กน้อย1-2โวลท์ก็ทำงานได้แล้ว ทำให้ตัวไอซีเรกกูเลเตอร์ไม่เกิดความร้อนสูงเกินจำเป็น
                      เช่น ต้องการไฟออกที่5โวลท์ จะใช้ไฟเข้าเริ่มต้นที่6โวลท์ ไฟออกก็นิ่งเสถียรแล้ว

                      ปรกติพวกไอซีเรกกูเลเตอร์3ขา 78xx, 3x7 พวกนี้ไฟเข้าต้องสูงกว่าไฟออกประมาณ4โวลท์ขึ้นไป ไฟออกถึงจะนิ่ง
                      ส่วนต่างของไฟเข้านี้ จะถูกแปรสภาพเป็นความร้อนภายในตัวไอซี ทำให้ตัวไอซีร้อนมาก
                      เช่น ต้องการไฟออกที่5โวลท์ จะต้องใช้ไฟเข้าเริ่มต้นที่8โวลท์ ไฟออกถึงจะนิ่งถึงจะเสถียร

                      Originally posted by ManiacMaew
                      ถ้าต่อจาก PSU ทั่วไปนี้คงnoiseกระจายเหมือนเดิม
                      เห็นมีคนทำ cmoy headamp แบบ hardwire bayใสช่องcdrom (คนในนี้แหล่ะ กระทู้เก่าๆ เลย)
                      ก็บ่นเรื่องว่าต่อไฟจากPSU แล้วเสียงแย่มาก ต้องใช้แบตแทน
                      อันนี้นานาจิตตังครับ ผมมองว่า ถ้าปัญหามันหนักขนาดนั้น พวกซาวน์การืดคงมีแต่น๊อยซ์เต็มไปหมดแล้วละ
                      แต่ทำไมซาวน์การ์ดถึงแก้ปัญหาในจุดนี้ได้ ทั้งๆที่ก็ใช้ไอซีเรกกูเลเตอร์ตระกูล78xxเหมือนกัน
                      อาจจะเป็นการแก้ปัญหายังไม่ตรงจุด ยังแก้ได้ไม่หมดมากกว่า


                      ------------------------------------------------


                      Originally posted by choochart.
                      พิ้นที่ด้านหลังการ์ดเหลือ1สล็อทครับ ด้านหน้าเหลือเยอะครับใส่EARTHแบบต่อตรงยังเหลืออีกประมาน1สล็อทครับ
                      ซิ้งค์ถ้าถอดได้ถอดไปเลยครับ เอาตามความสะดวกท่านครับ
                      เรื่องเวลาทำผมขอไม่เกินสิ้นเดือนนี้แล้วกันครับ ไม่สะดวกยังไงบอกได้นะครับ
                      รับทราบครับ จะพยายามเสร็จให้เร็วที่สุดเท่าที่จะทำได้ แล้วก็จะพยายามให้อยู่ในงบ3,000ให้ได้มากที่สุด
                      ถ้ามันจะเกินจริงๆจะบอกก่อนตัดสินใจทำส่วนที่เกินนั้น


                      ------------------------------------------------


                      Originally posted by TuiLor
                      เวนกำล่ะ การ์ด Sound ที่โป๊เปลือย โดนถอดแล้วถ่ายนู๊ด - -'
                      เพ่ เพ่ มีคนอยากเห็นไส้ใน X-Fi Titanium HD ก๊าบบบบ
                      Originally posted by tavichai
                      ท่าน TuiLor ผมอยากเห็นใส้ X-Fi Ti HD จังเลยครับ อิอิ
                      Originally posted by keang
                      ร่วมลงชื่ออยากเห็นไส้ X-Fi Titanium HD
                      มีเสียงเรียกร้องแล้ว งัดการ์ดโชว์ เล๊ยยยยย
                      Last edited by keang; 15 Oct 2010, 21:29:29.

                      Comment


                      • อันนี้นานาจิตตังครับ ผมมองว่า ถ้าปัญหามันหนักขนาดนั้น พวกซาวน์การืดคงมีแต่น๊อยซ์เต็มไปหมดแล้วละ
                        แต่ทำไมซาวน์การ์ดถึงแก้ปัญหาในจุดนี้ได้ ทั้งๆที่ก็ใช้ไอซีเรกกูเลเตอร์ตระกูล78xxเหมือนกัน
                        อาจจะเป็นการแก้ปัญหายังไม่ตรงจุด ยังแก้ได้ไม่หมดมากกว่า
                        ที่แก้ได้คือ ใช้พวกกรองกระแสมั้ง (เดา)
                        ต้นต่อของปัญหาน่าจะมาจากแหล่งจ่ายไฟ PSUมากกว่า swithcing ด้วย แล้วจ่ายให้กับตั้งหลายอย่างในระบบ
                        ทำให้บวกการกวนกัน ในแต่ล่ะระบบเข้าไปอีก

                        conceptในฝันกลางวันของผมคือ แยกลูกหม้อแปลงไปเลย จะได้ไม่มีการกวนกัน
                        78xx นี้คือ ขี้เกียจคิดครับ จริงๆ เอาอย่างอื่นก็ได้ ไม่ผ่านเลยก็ได้ แต่แบบไม่ผ่านregulatorเลย นี้ ripple มันจะหนักกว่าเดิมรึเปล่า
                        ยังไม่แน่ใจ ยังศึกษามาไม่เข้าใจพอ

                        พวก LDO นี้มันมีข้อดีข้อเสีย ต่างกับพวก 78xx ตรงไหนอีกบ้างมั้ยครับ

                        -------------

                        ไปนั่งเขียนรีวิว db211 แหล่ะค้างมานาน

                        --------------
                        เพ่ เพ่ มีคนอยากเห็นไส้ใน X-Fi Titanium HD ก๊าบบบบ
                        +1
                        เดี๊ยวนี้ ดูอะไร ถ้าไม่มีโอากาสฟังเสียงก็อยากเห็นไส้ในก่อนเลย

                        แต่ก็มีdac บ้างเจ้า กล้า เอาไส้ในแบบsmdมาโชว์ แล้วบอกว่าดี ทำให้มันเล็กลงได้
                        (อืม ก็ พูดความจริงครับ มันเล็กลงจริงๆ ทำให้ได้ขนาดportable แต่เป็นผม ผมไม่ซื้อคร้าบ
                        ผมสาย อยู่กับที่ เอาตั้งโต๊ะดีกว่า จะได้ยัดอะไหล่ใหญ่ๆ ได้ c film แบบหรู แพงๆ ตัวควายทั้งนั้น อยากลองเหมือนกัน)
                        Last edited by ManiacMaew; 15 Oct 2010, 21:44:27.

                        Comment


                        • Originally posted by keang View Post
                          เพ่ เพ่ มีคนอยากเห็นไส้ใน X-Fi Titanium HD ก๊าบบบบ
                          ใจคอการ์ดใหม่ๆ อายุยังไม่ถึง 18 คุกนะพี่ คุกนะ

                          Comment


                          • 555++

                            Comment


                            • เดียวม๊อด เจอ เข้าใจผิด(ระบบฟ้อง) จะเก็บกระถู้นี้ไหมเนี่ย 5555

                              ผมกำลังจะ 17เองน่ะพี่ครับ = =" เกิดไม่ทันหรอกครับ


                              เออ crystal oนี้ มันเป็นตัวกำหนดความถี่ หรือเป็นตัวกำเนิดครับ?

                              Comment


                              • Originally posted by pluanant
                                เออ crystal oนี้ มันเป็นตัวกำหนดความถี่ หรือเป็นตัวกำเนิดครับ?
                                เข้าใจว่าอยากรู้ อยากทำความเข้าใจ งั้นจัดให้


                                Crystal Oscillator Wikipedia คลิก

                                Electronic symbol


                                Schematic symbol and equivalent circuit for a quartz crystal in an oscillator


                                Collection of several older crystals


                                Inside


                                Crystal oscillation modes



                                History
                                Piezoelectricity was discovered by Jacques and Pierre Curie in 1880. Paul Langevin first investigated quartz resonators for use in sonar during World War I. The first crystal-controlled oscillator, using a crystal of Rochelle salt, was built in 1917 and patented[1] in 1918 by Alexander M. Nicholson at Bell Telephone Laboratories, although his priority was disputed by Walter Guyton Cady.[2] Cady built the first quartz crystal oscillator in 1921.[3] Other early innovators in quartz crystal oscillators include G. W. Pierce and Louis Essen.

                                Quartz crystal oscillators were developed for high-stability frequency references during the 1920s and 1930s. By 1926 quartz crystals were used to control the frequency of radio broadcasting stations and were popular with amateur radio operators.[4] In 1928, Warren Marrison (of Bell Telephone Laboratories) developed the first quartz crystal clock. This invention replaced the escapement and pendulum (as the timing reference), relying instead on the natural vibrations occurring in the quartz crystal as the oscillator. This improved timing accuracies to 1 sec in 30 years (or 30ms/year).


                                Operation
                                A crystal is a solid in which the constituent atoms, molecules, or ions are packed in a regularly ordered, repeating pattern extending in all three spatial dimensions.

                                Almost any object made of an elastic material could be used like a crystal, with appropriate transducers, since all objects have natural resonant frequencies of vibration. For example, steel is very elastic and has a high speed of sound. It was often used in mechanical filters before quartz. The resonant frequency depends on size, shape, elasticity, and the speed of sound in the material. High-frequency crystals are typically cut in the shape of a simple, rectangular plate. Low-frequency crystals, such as those used in digital watches, are typically cut in the shape of a tuning fork. For applications not needing very precise timing, a low-cost ceramic resonator is often used in place of a quartz crystal.

                                When a crystal of quartz is properly cut and mounted, it can be made to distort in an electric field by applying a voltage to an electrode near or on the crystal. This property is known as piezoelectricity. When the field is removed, the quartz will generate an electric field as it returns to its previous shape, and this can generate a voltage. The result is that a quartz crystal behaves like a circuit composed of an inductor, capacitor and resistor, with a precise resonant frequency. (See RLC circuit.)

                                Quartz has the further advantage that its elastic constants and its size change in such a way that the frequency dependence on temperature can be very low. The specific characteristics will depend on the mode of vibration and the angle at which the quartz is cut (relative to its crystallographic axes).[7] Therefore, the resonant frequency of the plate, which depends on its size, will not change much, either. This means that a quartz clock, filter or oscillator will remain accurate. For critical applications the quartz oscillator is mounted in a temperature-controlled container, called a crystal oven, and can also be mounted on shock absorbers to prevent perturbation by external mechanical vibrations.


                                Electrical oscillators
                                The crystal oscillator circuit sustains oscillation by taking a voltage signal from the quartz resonator, amplifying it, and feeding it back to the resonator. The rate of expansion and contraction of the quartz is the resonant frequency, and is determined by the cut and size of the crystal. When the energy of the generated output frequencies matches the losses in the circuit, an oscillation can be sustained.

                                An oscillator crystal has two electrically conductive plates, with a slice or tuning fork of quartz crystal sandwiched between them. During startup, the circuit around the crystal applies a random noise AC signal to it, and purely by chance, a tiny fraction of the noise will be at the resonant frequency of the crystal. The crystal will therefore start oscillating in synchrony with that signal. As the oscillator amplifies the signals coming out of the crystal, the signals in the crystal's frequency band will become stronger, eventually dominating the output of the oscillator. The narrow resonance band of the quartz crystal filters out all the unwanted frequencies.

                                The output frequency of a quartz oscillator can be either the fundamental resonance or a multiple of the resonance, called an overtone frequency. High frequency crystals are often designed to operate at third, fifth, or seventh overtones.

                                A major reason for the wide use of crystal oscillators is their high Q factor. A typical Q value for a quartz oscillator ranges from 104 to 106, compared to perhaps 102 for an LC oscillator. The maximum Q for a high stability quartz oscillator can be estimated as Q = 1.6 × 107/f, where f is the resonance frequency in megahertz.

                                One of the most important traits of quartz crystal oscillators is that they can exhibit very low phase noise. In many oscillators, any spectral energy at the resonant frequency will be amplified by the oscillator, resulting in a collection of tones at different phases. In a crystal oscillator, the crystal mostly vibrates in one axis, therefore only one phase is dominant. This property of low phase noise makes them particularly useful in telecommunications where stable signals are needed, and in scientific equipment where very precise time references are needed.

                                Environmental changes of temperature, humidity, pressure, and vibration can change the resonant frequency of a quartz crystal, but there are several designs that reduce these environmental effects. These include the TCXO, MCXO, and OCXO (defined below). These designs (particularly the OCXO) often produce devices with excellent short-term stability. The limitations in short-term stability are due mainly to noise from electronic components in the oscillator circuits. Long term stability is limited by aging of the crystal.

                                Due to aging and environmental factors (such as temperature and vibration), it is difficult to keep even the best quartz oscillators within one part in 1010 of their nominal frequency without constant adjustment. For this reason, atomic oscillators are used for applications requiring better long-term stability and accuracy.


                                Spurious frequencies
                                For crystals operated in series resonance, significant (and temperature-dependent) spurious responses may be experienced. These responses typically appear some tens of kilohertz above the wanted series resonance. Even if the series resistances at the spurious resonances appear higher than the one at wanted frequency, the oscillator may lock at a spurious frequency (at some temperatures). This is generally avoided by using low impedance oscillator circuits to enhance the series resistance differences.

                                Spurious frequencies are also generated by subjecting the crystal to vibrations and are offset to the resonance frequency by the frequency of the vibrations. SC-cut crystals are designed to have their internal stresses compensated and are therefore less sensitive to vibrations. Mechanical properties of the mounting assembly are however more significant than the crystal cut.

                                Commonly used crystal frequencies
                                Crystal oscillator circuits are often designed around relatively few standard frequencies, such as 3.579545 MHz, 10 MHz, 14.318 MHz, 20 MHz, 33.33 MHz, and 40 MHz. The popularity of the 3.579545 MHz crystals is due to low cost since they are used for NTSC color television receivers. Using frequency dividers, frequency multipliers and phase locked loop circuits, it is practical to derive a wide range of frequencies from one reference frequency. 14.318 MHz is used in computer video displays to generate a bitmapped video display for NTSC color monitors, such as the CGA used with the original IBM PC. (The IBM PC used 14.318 MHz, divided by three, as its 4.77 MHz clock source, using one crystal for two purposes.)

                                Crystals can be manufactured for oscillation over a wide range of frequencies, from a few kilohertz up to several hundred megahertz. Many applications call for a crystal oscillator frequency conveniently related to some other desired frequency, so hundreds of standard crystal frequencies are made in large quantities and stocked by electronics distributors.


                                Stability and aging
                                The frequency stability is determined by the crystal's Q. It is inversely dependent on the frequency, and on the constant that is dependent on the particular cut. Other factors influencing Q are the overtone used, the temperature, the level of driving of the crystal, the quality of the surface finish, the mechanical stresses imposed on the crystal by bonding and mounting, the geometry of the crystal and the attached electrodes, the material purity and defects in the crystal, type and pressure of the gas in the enclosure, interfering modes, and presence and absorbed dose of ionizing and neutron radiation.

                                Temperature influences the operating frequency; various forms of compensation are used, from analog compensation (TCXO) and microcontroller compensation (MCXO) to stabilization of the temperature with a crystal oven (OCXO). The crystals possess temperature hysteresis; the frequency at a given temperature achieved by increasing the temperature is not equal to the frequency on the same temperature achieved by decreasing the temperature. The temperature sensitivity depends primarily on the cut; the temperature compensated cuts are chosen as to minimize frequency/temperature dependence. Special cuts can be made with a linear temperature characteristics; the LC cut is used in quartz thermometers. Other influencing factors are the overtone used, the mounting and electrodes, impurities in the crystal, mechanical strain, crystal geometry, rate of temperature change, thermal history (due to hysteresis), ionizing radiation, and drive level.

                                Crystals tend to suffer anomalies in their frequency/temperature and resistance/temperature characteristics, known as activity dips. These are small downward (in frequency) or upward (in resistance) excursions localized at certain temperatures, with their temperature position dependent on the value of the load capacitors.

                                Mechanical stresses also influence the frequency. The stresses can be induced by mounting, bonding, and application of the electrodes, by differential thermal expansion of the mounting, electrodes, and the crystal itself, by differential thermal stresses when there is a temperature gradient present, by expansion or shrinkage of the bonding materials during curing, by the air pressure that is transferred to the ambient pressure within the crystal enclosure, by the stresses of the crystal lattice itself (nonuniform growth, impurities, dislocations), by the surface imperfections and damage caused during manufacture, and by the action of gravity on the mass of the crystal; the frequency can therefore be influenced by position of the crystal. Other dynamic stress inducing factors are shocks, vibrations, and acoustic noise. Some cuts are less sensitive to stresses; the SC (Stress Compensated) cut is an example. Atmospheric pressure changes can also introduce deformations to the housing, influencing the frequency by changing stray capacitances.

                                Atmospheric humidity influences the thermal transfer properties of air, and can change electrical properties of plastics by diffusion of water molecules into their structure, altering the dielectric constants and electrical conductivity.

                                Other factors influencing the frequency are the power supply voltage, load impedance, magnetic fields, electric fields (in case of cuts that are sensitive to them, e.g. SC), the presence and absorbed dose of γ-particles and ionizing radiation, and the age of the crystal.

                                Crystals undergo slow gradual change of frequency with time, known as aging. There are many mechanisms involved. The mounting and contacts may undergo relief of the build-in stresses. Molecules of contamination either from the residual atmosphere, outgassed from the crystal, electrodes or packaging materials, or introduced during sealing the housing can be adsorbed on the crystal surface, changing its mass; this effect is exploited in quartz crystal microbalances. The composition of the crystal can be gradually altered by outgassing, diffusion of atoms of impurities or migrating from the electrodes, or the lattice can be damaged by radiation. Slow chemical reactions may occur on or in the crystal, or on the inner surfaces of the enclosure. Electrode material, e.g. chromium or aluminium, can react with the crystal, creating layers of metal oxide and silicon; these interface layers can undergo changes in time. The pressure in the enclosure can change due to varying atmospheric pressure, temperature, leaks, or outgassing of the materials inside. Factors outside of the crystal itself are e.g. aging of the oscillator circuitry (and e.g. change of capacitances), and drift of parameters of the crystal oven. External atmosphere composition can also influence the aging; hydrogen can diffuse through nickel housing. Helium can cause similar issues when it diffuses through glass enclosures of rubidium standards.

                                Gold is a favored electrode material for low-aging resonators; its adhesion to quartz is strong enough to maintain contact even at strong mechanical shocks, but weak enough to not support significant strain gradients (unlike chromium, aluminium, and nickel). Gold also does not form oxides; it adsorbs organic contaminants from the air, but these are easy to remove. However, gold alone can undergo delamination; a layer of chromium is therefore sometimes used for improved binding strength. Silver and aluminium are often used as electrodes; however both form oxide layers with time that increases the crystal mass and lowers frequency. Silver can be passivated by exposition to iodine vapors, forming a layer of silver iodide. Aluminium oxidizes readily but slowly, until about 5 nm thickness is reached; increased temperature during artificial aging does not significantly increase the oxide forming speed; a thick oxide layer can be formed during manufacture by anodizing. Exposition of silver-plated crystal to iodine vapors can be also used in amateur conditions for lowering the crystal frequency slightly; the frequency can be also increased by scratching off parts of the electrodes, but that carries risk of damage to the crystal and loss of Q.

                                A DC voltage bias between the electrodes can accelerate the initial aging, probably by induced diffusion of impurities through the crystal. Placing a capacitor in the series with the crystal and a several megaohms resistor in parallel can minimize such voltages.

                                Crystals suffer from minor short-term frequency fluctuations as well. The main causes of such noise are e.g. thermal noise (which limits the noise floor), phonon scattering (influenced by lattice defects), adsorption/desorption of molecules on the surface of the crystal, noise of the oscillator circuits, mechanical shocks and vibrations, acceleration and orientation changes, temperature fluctuations, and relief of mechanical stresses. The short-term stability is measured by four main parameters: Allan variance (the most common one specified in oscillator datasheets), phase noise, spectral density of phase deviations, and spectral density of fractional frequency deviations. The effects of acceleration and vibration tend to dominate the other noise sources; surface acoustic wave devices tend to be more sensitive than bulk acoustic wave (BAW) ones, and the stress-compensated cuts are even less sensitive. The relative orientation of the acceleration vector to the crystal dramatically influences the crystal's vibration sensitivity. Mechanical vibration isolation mountings can be used for high-stability crystals.

                                Crystals are sensitive to shock. The mechanical stress causes short-time change in the oscillator frequency due to the stress-sensitivity of the crystal, and can introduce a permanent change of frequency due to shock-induced changes of mounting and internal stresses (if the elastic limits of the mechanical parts are exceeded), desorption of contamination from the crystal surfaces, or change in parameters of the oscillator circuit. High magnitudes of shocks may tear the crystals off their mountings (especially the case of large low-frequency crystals suspended on thin wires), or cause cracking of the crystal. Crystals free of surface imperfections are highly shock-resistant; chemical polishing can produce crystals able to survive tens of thousands g.

                                Phase noise plays significant role in frequency synthesis systems using frequency multiplication; a multiplication of a frequency by N increases the phase noise by N2. A frequency multiplication by 10 times multiplies the phase error by 100 times. This can be disastrous for systems employing e.g. PLL or FSK technologies.

                                Crystals are somewhat sensitive to radiation damage. Natural quartz is much more sensitive than artificially grown crystals, and sensitivity can be further reduced by sweeping the crystal - heating the crystal to at least 400 °C in hydrogen-free atmosphere in electric field of at least 500 V/cm for at least 12 hours. Such swept crystals have very low response to steady ionizing radiation. Some Si(IV) atoms are replaced with Al(III) impurities, each having a compensating Li+ or Na+ cation nearby. Ionization produces electron-hole pairs; the holes are trapped in the lattice near the Al atom, the resulting Li and Na atoms are loosely trapped along the Z axis; the change of the lattice near the Al atom and the corresponding elastic constant then causes a corresponding change in frequency. Sweeping removes the Li+ and Na+ ions from the lattice, reducing this effect. The Al3+ site can also trap hydrogen atoms. All crystals have transient negative frequency shift after exposition to an X-ray pulse; the frequency then shifts gradually back; natural quartz reaches stable frequency after 10–1000 seconds, with negative offset to pre-irradiation frequency, artificial crystals return to frequency slightly lower or higher than pre-irradiation, swept crystals anneal virtually back to original frequency. The annealing is faster at higher temperatures. Sweeping under vacuum at higher temperatures and field strength can further reduce the crystal's response to X-ray pulses.[21] Series resistance of unswept crystals increases after an X-ray dose, and anneals back to a somewhat higher value for a natural quartz (requiring a corresponding gain reserve in the circuit) and back to pre-irradiation value for synthetic crystals. Series resistance of swept crystals is unaffected. Increase of series resistance degrades Q; too high increase can stop the oscillations. Neutron radiation induces frequency changes by introducing dislocations into the lattice by knocking out atoms, a single fast neutron can produce many defects; the SC and AT cut frequency increases roughly linearly with absorbed neutron dose, while the frequency of the BT cuts decreases.[33] Neutrons also alter the temperature-frequency characteristics. Frequency change at low ionizing radiation doses is proportionally higher than for higher doses. High-intensity radiation can stop the oscillator by inducing photoconductivity in the crystal and transistors; with a swept crystal and properly designed circuit the oscillations can restart within 15 microseconds after the radiation burst. Quartz crystals with high level of alkali metal impurities lose Q with irradiation; Q of swept artificial crystals is unaffected. Irradiation with higher doses (over 105 rad) lowers sensitivity to subsequent doses. Very low radiation doses (below 300 rad) have disproportionally higher effect, but this nonlinearity saturates at higher doses. At very high doses, the radiation response of the crystal saturates as well, due to finite number of impurity sites that can be affected.

                                Magnetic fields have low effect on the crystal itself, as quartz is diamagnetic; eddy currents or AC voltages can however be induced into the circuits, and magnetic parts of the mounting and housing may be influenced.

                                After the power-up, the crystals take several seconds to minutes to "warm up" and stabilize their frequency. The oven-controlled OCXOs require usually 3–10 minutes for heating up and reaching thermal equilibrium, the oven-less oscillators stabilize in several seconds as the few milliwatts dissipated in the crystal cause a small but noticeable level of internal heating.

                                Crystals have no inherent failure mechanisms; some are operating in devices for decades. Failures may be however introduced by faults in bonding, leaky enclosures, corrosion, frequency shift by aging, breaking the crystal by too high mechanical shock, or radiation induced damage when nonswept quartz is used. Crystals can be also damaged by overdriving.


                                The crystals have to be driven at the appropriate drive level. While AT cuts tend to be fairly forgiving, and only their electrical parameters, stability and aging characteristics are degraded when overdriven, low-frequency crystals, especially flexural-mode ones, may fracture at too high drive levels. The drive level is specified as the amount of power dissipated in the crystal. The appropriate drive levels are about 5 microwatts for flexural modes up to 100 kHz, 1 microwatt for fundamental modes at 1-4 MHz, 0.5 microwatts for fundamental modes 4-20 MHz, and 0.5 microwatts for overtone modes at 20-200 MHz.[36] Too low drive level may cause problems with starting the oscillator. Low drive levels are better for higher stability and lower power consumption of the oscillator. Higher drive levels, in turn, reduce the impact of noise by increasing the signal-to-noise ratio.


                                Circuit notations and abbreviations
                                On electrical schematic diagrams, crystals are designated with the class letter Y (Y1, Y2, etc.) Oscillators, whether they are crystal oscillators or other, are designated with the class letter G (G1, G2, etc.) (See IEEE Std 315-1975, or ANSI Y32.2-1975.) On occasion, one may see a crystal designated on a schematic with X or XTAL, or a crystal oscillator with XO, but these forms are deprecated.


                                --- ส่วนนี้สำคัญ ใครแปลเป็นไทยได้ ช่วยแปลด้วย ---
                                Crystal oscillator types and their abbreviations:
                                ATCXO — Analog temperature controlled crystal oscillator
                                CDXO — Calibrated dual crystal oscillator
                                DTCXO — Digital temperature compensated crystal oscillator
                                EMXO — Evacuated miniature crystal oscillator
                                GPSDO — Global positioning system disciplined oscillator
                                MCXO — Microcomputer-compensated crystal oscillator
                                OCVCXO — oven-controlled voltage-controlled crystal oscillator
                                OCXO — Oven-controlled crystal oscillator
                                RbXO — Rubidium crystal oscillators (RbXO), a crystal oscillator (can be an MCXO) synchronized with a built-in rubidium standard which is run only occasionally to save power
                                TCVCXO — Temperature-compensated voltage-controlled crystal oscillator
                                TCXO — Temperature-compensated crystal oscillator
                                TMXO - Tactical miniature crystal oscillator
                                TSXO — Temperature-sensing crystal oscillator, an adaptation of the TCXO
                                VCTCXO — Voltage-controlled temperature-compensated crystal oscillator
                                VCXO — Voltage-controlled crystal oscillator

                                --- ส่วนนี้สำคัญ ใครแปลเป็นไทยได้ ช่วยแปลด้วย ---

                                Milestones in Quartz Technology
                                1880 Piezoelectric effect discovered by Jacques and Pierre Curie
                                1905 First hydrothermal growth of quartz in a laboratory - by G. Spezia
                                1917 First application of piezoelectric effect, in sonar
                                1918 First use of piezoelectric crystal in an oscillator
                                1926 First quartz crystal controlled broadcast station
                                1927 First temperature compensated quartz cut discovered
                                1927 First quartz crystal clock built
                                1934 First practical temp. compensated cut, the AT-cut, developed
                                1949 Contoured, high-Q, high stability AT-cuts developed
                                1956 First commercially grown cultured quartz available
                                1956 First TCXO described
                                1972 Miniature quartz tuning fork developed; quartz watches available
                                1974 The SC-cut (and TS/TTC-cut) predicted; verified in 1976
                                1982 First MCXO with dual c-mode self-temperature sensing

                                ---------------------------------------------------------


                                เดี๋ยวจะหาว่า มีแต่น้ำ ให้อ่านให้ทำความเข้าใจ แต่ไม่สามารถเอาไปใช้งานได้
                                งั้นจัดให้สำหรับคนที่จะเอาไปใช้งานจริง ไม่ว่าจะเป็น Sound Card, DAC, Player ฯลฯ
                                ทุกอย่างที่พูดถึงนี้ ใช้หลักการ ใช้วงจรพื้นฐาน แบบข้างล่างนี้ทั้งนั้น


                                Pierce Oscillator Wikipedia คลิก

                                The Pierce oscillator is a type of electronic oscillator circuit particularly well-suited for implementing crystal oscillator circuits. Named for its inventor, George W. Pierce (1872-1956), the Pierce oscillator is a derivative of the Colpitts oscillator. Virtually all digital IC clock oscillators are of Pierce type, as the circuit can be implemented using a minimum of components: a single digital inverter, two resistors, two capacitors, and the quartz crystal, which acts as a highly selective filter element. The low manufacturing cost of this circuit, combined with the outstanding frequency stability of the quartz crystal, give it an advantage over other designs in many consumer electronics applications.

                                Operation


                                - Biasing resistor
                                R1 acts as a feedback resistor, biasing the inverter in its linear region of operation and effectively causing it to function as a high gain inverting amplifier. To see this, assume the inverter is ideal, with infinite input impedance and zero output impedance; this resistor forces the input and output voltages to be equal. Hence the inverter will neither be fully on nor off, but in the transition region where it has gain.

                                - Resonator
                                The crystal in combination with C1 and C2 forms a pi network band-pass filter, which provides a 180 degree phase shift and a voltage gain from the output to input at approximately the resonant frequency of the crystal. To understand the operation of this, it can be noted that at the frequency of oscillation, the crystal appears inductive; thus it can be considered a large inductor with a high Q. The combination of the 180 degree phase shift (i.e. inverting gain) from the pi network and the negative gain from the inverter results in a positive loop gain (positive feedback), making the bias point set by R1 unstable and leading to oscillation.

                                - Isolation resistor
                                A second resistor could be used between the output of the inverter and the crystal to isolate the inverter from the crystal network. This would also add additional phase shift to C1.

                                - Load capacitance
                                The total capacitance seen from the crystal looking into the rest of the circuit is called the "load capacitance". When a manufacturer makes a "parallel" crystal, a technician uses a Pierce oscillator with a particular load capacitance (often 18 or 20 pF) while trimming the crystal to oscillate at exactly the frequency written on its package.

                                To get the same frequency performance, one must then make sure that the capacitances in the circuit match this value specified in the crystal's data sheet. Load capacitance CL can be calculated from the series combination of C1 and C2, taking into account Ci and Co, the input and output capacitance of the inverter, and Cs, the stray capacitances from the oscillator, PCB layout, and crystal case (typically 3-9 pF):



                                When a manufacturer makes a "series" crystal, a technician uses a different tuning procedure. When such a crystal is used in a Pierce oscillator, the Pierce oscillator (as always) drives the crystal at nearly its parallel resonance frequency. But that frequency is few kilohertz higher than the series resonant frequency printed on the package of a "series" crystal.

                                Increasing the "load capacitance" slightly decreases the frequency generated by a Pierce oscillator, but never enough to reduce it all the way down to the series resonant frequency.


                                ---------------------------------------------------------


                                เรื่องก็เรื่องเดียวกัน อัดในโพสเดียวกันนี่แหล่ะ เอาให้หัวระเบิดกันไปเลย

                                A practical example of a Crystal Oscillator
                                This is a typical example of the type of crystal oscillators which may be used for say converters. Some points of interest on crystal oscillators in relation to figure 1.



                                The transistor could be a general purpose type with an Ft of at least 150 Mhz for HF use. A typical example would be a 2N2222A.

                                The turns ratio on the tuned circuit depicts an anticipated nominal load of 50 ohms. This allows a theoretical 2K5 ohms on the collector. If it is followed by a buffer amplifier (highly recommended) I would simply maintain the typical 7:1 turns ratio. I have included a formula for determining L and C in the tuned circuits of crystal oscillators in case you have forgotten earlier tutorials. Personally I would make L a reactance of around 250 ohms. In this case I'd make C a smaller trimmer in parallel with a standard fixed value.

                                You can use an overtone crystal for the crystal and set L * C for the odd particular multiple of overtone wanted in your crystal oscillators.


                                Super VXO MINOWA, Makoto 7N3WVM คลิก



                                The Super VXO uses two X-tals of the identical nominal frequency in parallel instead of a single X-tal of a conventional VXO. Nothing else is special. It can pull considerablly more frequencies than the conventional one. About 40kHz for a pair of 10.15MHz X-tals, and 90kHz for 13MHz, according to my experiences.

                                The Super VXO was invented and named by JAfAS(Mr. Shimizu, Silent Key) and JH1FCZ(Mr. Okubo). An article on experimental results of the Super VXO first appeared(in Japanese) in the August 1980 issue (Number 64) of "Fancy Crazy Zippy", an HB- and QRP-related periodical magazine published by JH1FCZ. The story of their invention of the Super VXO is reported in a book(written in Japanese) entitled "Textbook for Homebrewing of Electronic Circuits" (the original title is in Japanese.) written by JH1FCZ.

                                The followings are my experimental results.

                                (1)Two 10.15MHz X-tals in parallel + 15uH inductor + 20pF poly-variable cap. covered the range of 10.10 - 10.14MHz. I built a 30m direct conversion QRP XCVR with it. Frequency is very stable. The transistor used is 2SC1815, a common general purpose small signal TR with fT=80MHz.

                                (2)Two 13MHz X-tals in parallel + VXO-50 coil(see below) + 30pF air variable cap. gave the range 12.91 - 13.00MHz. The transistor used is again 2SC1815.

                                The VXO-50 coil is designed specially for VXO for 6 meter rigs and sold by the FCZ-lab, a company owned and run by JH1FCZ(they sell many kits and special parts for HAMs). This coil is slug-tunable with a core of small temperature coefficient. The inductance ranges between 7 and 11uH.

                                This Super VXO is used in my 6m QRP SSB super-het XCVR. The VXO freq is multiplied by 3 and used with IF of 11.2735MHz to cover the freq range of 50.00 - 50.27 MHz (270 kHz !). Frequency is acceptablly stable but not so stable as the above example of 10.15MHz. A change in voice pitch is audible in a long QSO.

                                I have results also on 20m CW XCVR and 40m CW XCVR. Refer to descriptions for those rigs.

                                A X-tal with a frequency below 10MHz is hard to pull by more than 50kHz even with this method if you need stable freq. The lower the frequency, the narrower the range. Therefore, for lower bands, you need to choose appropriate IF to cover the wide freq range with Super VXO of higher freq.

                                A 3rd over tone X-tal can be used at its fundamental frequency.

                                The frequency range could be made wider with larger inductance value, but the frequency stability gets worse rapidly with increasing inductance. JH1FCZ recommends in his book mentioned above that one should keep the freq range within 0.5% of the nominal freq to maintain the freq stability, namely 50kHz for 10MHz for example.

                                I tried super VXO's with various types of inductors of the same value, and found that inductors with larger physical size seem to work better. Those who want to experiment this method may need to try with as many types of inductors as possible. Increasing the bias current of the TR may also help in case it does not oscillate.

                                As you vary the frequency, you might observe a sudden skip of the frequency with hysteresis. This phenomenum can be cured by putting a 10- to 30- kiloohm resistor in parallel to the inductor.

                                You might want to use a surplus square canned slug-tunable coil of an appropriate inductance for Super VXO, but the freq stability depends on the temperature coefficient of the core material used. Commonly used core materials seem to have large temperature coefficients.
                                I have no experience of Super VXO with an iron powder troidal core inductance, but proper choice of the core material is also the key in the sense of the freq stability.
                                Last edited by keang; 16 Oct 2010, 17:43:10.

                                Comment

                                Working...
                                X